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1 Introduction

In the last two decades, increasing interest is brought to con-
trol the output active power of wind farms in order to meet
power set-points sent to the wind turbines and fulfill the
power demand. However, the ability to participate in the
frequency regulation and provide ancillary services to the
TSO (Transmission System Operator) is one of the present
offshore wind farm challenges. The goal of this research
project is to further investigate how wind farms can achieve
this goal at best by taking into account wake effects, load
mitigation and active power reserve in the dispatching of
the active power set points to the individual turbines. The
control strategy will be based on three modules. A module
estimating the total power available in the immediate future,
a module deducing the plant wide power reserve needed to
ensure proper frequency regulation, and a module perform-
ing the optimal power dispatching including load mitiga-
tion. The developed control strategy will be implemented
and validated in simulation using software like FAST.Farm
and SOWFA.

2 The control strategy

The present control strategy in the Belgian offshore wind
farms is based only on controlling the output power in or-
der to dispatch the demand from ELIA (the Belgian TSO)
as displayed in Figure.1 by following the blue dots. Indeed,
thanks to measurements and historical data inputs, the avail-
able power of the wind farm is predicted one day ahead.
On this basis, ELIA decides on a power reference that goes
through a power controller dispatching the power needed for
the demand. Finally, the wind farm gives back new SCADA
measurements as input to the power prediction algorithm.
Our contribution is to assess the opportunity for offshore
wind farms to participate in the utility grid. Indeed, by fol-
lowing the orange dots Figure.1, the wind farm power is
predicted in the immediate future then converted to know
the immediate future power reserve at hand. If a fault is de-
tected, a frequency controller overcomes this disturbance by
appropriate action on the wind farm power set-points.

Figure 1: The control strategy of the belgian offshore wind
farms (blue dots in the top right corners), and our
contribution (orange dots in the top right corners

3 Future work

The research project will focus on the three following mod-
ules that are also displayed in Figure.1:

1. Estimation: predict the total power available now and
in the immediate future.

2. Power reserve: determine the plant-wide power re-
serve level needed to provide frequency regulation.

3. Distribution (Control): Determine the optimal power
set points to distribute to the wind turbines.
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Power balance in a power system 
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[2] ANN-based grid voltage and frequency forecaster, Alessandro.M et Al. 
 

Balance between Production power and Consumption power must be controlled. 

• How to measure this balance?  

Frequency is the global indicator of consumption-production balance ! 
 

50

Hz 
• ELIA (TSO) requirement 1: The grid frequency must be: 50 Hz +/- 0.2 Hz 

[2] 
 



ELIA (TSO)  requirements (2,3): Time to deliver primary and secondary frequency regulations 

Power balance in a power system 
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Aim of the thesis  
(Problem) 
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 Aim of the thesis: How wind farms can achieve at best ancillary services, FCR and 
FRR, in case of a fault in the grid? 

[3]: Free icons, License: Personal Use Only:https://www.vippng.com/preview/iJJoTm_marine-offshore-wind-turbine-icon-offshore-wind-turbines/ 

[3] 

? 
By fast generating units 
(e.g  Inertial response) 



Main controls on a wind turbine 
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[4]:  ’’Load Mitigation Using Slotted Flaps in Offshore Wind Turbines’’ Silpha et Al. 

Torque control Pitch control 

[3] 

Wind 

[3] 

Wind 

[4] 

 Controls aim: Maximize the wind turbine power 
dependently from wind speed 
 Fast controls (torque rate: 15 kN.m/s | pitch rate: 8°/s) 



Main controls on a wind turbine 
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Yaw control 

[3] 

Wind 

Top view 

Wind 

Yaw error 

 Control aim: Maximize the wind turbine power 
by minimizing the yaw error. 
 Slow control (yaw rate: 0.3°/s) 
 27 times slower than the pitch control! 
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Wind farms in power system balance 
(state of the art) 
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In the literature: It has been proven that FCR or FRR can be achieved by the fast controllers: 

De-rating the turbines using pitch and torque controls  

 De-rating a turbine: 



In the literature: It has been proven that a wind farm efficiency can be increased by 

approximately 15% thanks to the yaw redirecting method (yaw optimization control) 

[5]: A light fog reveals the wake effect behind turbines at Vattenfall’s Horns Rev wind farm off Denmark.Photo: Vattenfall 

[6]: Design and analysis of a wake steering controller with wind direction variability; Eric et Al. 

[5] The wake effect 

[6] Top view 

Top view 

Wind farms in power system balance 
(state of the art) 
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Wind farms in power system balance 
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Wind farms in power system balance 
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What is the relationship between wake, yaw, and power within a wind farm?  10 



Wake deficit of turbine j: 

Wake – yaw – power model 
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Wake center position: with: 



Wake deficit of turbine j: 

Wake – yaw – power model 
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Wake center position: with: 

Wake deficit by all turbines { j} on turbine i: 

Power generated by turbine i: 



Wake deficit of turbine j: 
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Wake center position: with: 

Wake deficit by all turbines { j} on turbine i: 

Power generated by turbine i: 



Wake deficit of turbine j: 

Wake – yaw – power model 
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Wake center position: with: 

Wake deficit by all turbines { j} on turbine i: 

Power generated by turbine i: 
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ROYAL BELGIAN INSTITUTE OF NATURAL SCIENCES 
https://odnature.naturalsciences.be/mumm/en/windfarms/project/5 
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Parameters update with FAST.Farm 
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A simulation of the worst case in FAST.Farm 

https://www.naturalsciences.be/en/science/do/98


Parameters update with FAST.Farm 
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A statistical method aiming to reduce drastically the number of runs necessary to 

achieve a reasonably accurate result. 



 LHS for N=50 quasi-random simulations (wind speed and yaw angles) 

Minimize the RMSE (optimization problem to find the updated parameters).   

 

 

 

 

 

 

 

 
 
 

Value most recommended 

for offshore wind farms in 

literature 

 The total RMSE 0,07 MW 

 The RMSE of each simulation with the same data: 

min(RMSE)=0,041 MW ; Max(RMSE)=0,162 MW 

 The RMSE of each simulation with a validation data (N=50 new quasi-random 

simulations from LHS)  

min(RMSE)=0,042  MW ; Max(RMSE)= 0,165 MW 

Parameters update with FAST.Farm 
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Wake – yaw – power model VS FAST.Farm 
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• Optimization yaw angles algorithm  

 

• Quantify the power gained from yaw 

optimization control for FRR 

 

• Set the pitch and torque controllers 

for power de-rating needed for FCR 

 

• Achieve ELIA’s FCR and FRR tests 

 

• Expand the problem to higher wind 

speeds (higher than the rated one) 

 

• Load mitigation 
 

Future work 
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